Deuterium depletion results in several fold increases in the median survival time of cancer patients during oncotherapy

Gábor Somlyai¹, Mária Debrődi¹, Ildikó Somlyai¹, Orsolya Abonyi¹, László G. Boros²,³,⁴

¹HYD LLC for Cancer Research and Drug Development, Budapest, Hungary, ²Department of Pediatrics, Harbor-UCLA Medical Center, UCLA School of Medicine, Los Angeles, CA 90502, USA, ³The Los Angeles Biomedical Research Institute (LABiOMED), Torrance, CA 90502, USA, ⁴SIDMAP, LLC, Culver city, CA 90063, USA

The central role of hydrogen is well known in regulating chemical reaction kinetics and the role of its stable heavy isotope, deuterium (D), is also important in regulating chemical and structural protein interactions and functions. The deuterium/hydrogen (D/H) mass ratio is the largest among stable isotopes of the same element, which causes dramatic, sometimes ten-fold differences in the chemical behavior between the two hydrogen isotopes [1, 2]. The concentration of deuterium is about 150 ppm (over 16 mM/L) in surface water and 12-14 mM/L in living organisms, which is a relevant concentration considering that the Ca²⁺ normal value in human blood is only 2.24-2.74 mM/L. In order to reveal the possible role of naturally occurring D in living organisms, the replacement of surface water with deuterium-depleted water (DDW) in a range from 25 ppm to 135 ppm was investigated in cell cultures, animal studies, as well as in prospective blinded and retrospective clinical trials. Deuterium-depleted water inhibited cell growth of multiple cancer cell lines in in vitro culturing studies [3-6] and readily induced tumor xenograft regression in immune compromised mice [3, 5]. Replacement of normal daily water intake with DDW induced complete or partial tumour regression in dogs and cats with various spontaneous tumours [4] as the result of the very first deuterium-depleted anticancer drug registered for veterinary use in Hungary, in 1999.

To explore the efficacy of deuterium depletion (DD) when included in oncotherapy both prospective and retrospective studies have been reported. Double blind, controlled, human Phase II clinical trial with prostate cancer, in compliance with GCP principles exhibited a significant difference between the control (22 patients) and treated (22 patients) groups with respect to end point parameters and confirmed the anti-tumour efficacy of DDW. Seven patients in the treated group and one patient in the placebo group achieved partial response (p = 0.046) during the four months treatment period with DDW. In the treated group net decrease in prostate volume was three times higher (160.3 cm³ vs. 54.0 cm³; p = 0.0019), urination complaints ceased at a higher rate (8 (DDW) vs. 0 (control) patients, p = 0.0041), and the one-year survival rate was also higher (2 (DDW) vs. 9 (control) deaths; p = 0.034) [7].

To gain additional information on DDW efficacy, the data matrices of 1827 cancer patients consuming DDW were evaluated in an open label retrospective study. The cumulative follow-up period of patients covers over 6881 years from the diagnosis of the disease, with DDW consumption of 2265 cumulative years. Median survival time (MST) of the 1827 control patients treated with standard oncotherapy, which represent all major tumor types, was 121.2 months (10.1 years). MST correlated with the length of DDW consumption in treated groups, such as; DDW treatment (DDW-T) for at least 91 days (n=1689 patients) resulted in an MST of 115 months (9.6 years), (DDW-T) for at least 151 days (n=1312 patients) showed an MST of 132 months (11 years), (DDW-T) for at least 211 days (n=1060 patients) showed

an MST of 141 months (11.7 years), (DDW-T) for at least 271 days (n=889 patients) showed
an MST of 158 months (13.2 years), and (DDW-T) for at least 331 days (n=765 patients)
reaffirmed MST of 158 months 13.2 years). It was found that 171 out of 1827 patients
started DDW consumption in a tumor free stage and only 11 patients died during the 801
years cumulative follow up, which suggests that DD can drastically reduce disease relapse
with a significant extension of disease free survival. The MST of small, homogenous
prostate-, breast-, lung- and pancreas cancer populations was also calculated. The MST was
64.8 months in prostate cancer patients (n=20) having bone metastases within one year
after diagnosis, which is a 3-fold increase when compared to 15-20 months in patients with
standard oncological care without DDW [7]. The 74 breast cancer patients with stage IV
disease with distant metastases in 135 cumulative number of organs the DDW-treated group
showed an MST of 4.3 years in comparison with ~2.0 years MST [8] of control patients. One
of the striking results was that only one patient died during the 221 years cumulative follow-
up period out of the 48 breast cancer patients who started to consume DDW in remission
[8]. The MST was 25.9 months in male patients (n=78) and 74.1 months in female patients
(n=51) with lung cancer which is a 3 to 7 fold increase in comparison with control patients
receiving conventional oncotherapy [9]. Unresectable pancreatic cancer patients entering
DDW trial within or after 60 days of diagnosis were also evaluated. The MST for patients
starting the DDW treatment within 60 days after diagnosis (n=18) achieved 39 months MST.
In contrast, patients joining the DDW trial 60 days or later after diagnosis (n=14) showed a
16 months’ MST [10]. The basic concepts of dosing DD as part of standard oncotherapy
will be discussed.

References:


286-363

5793(93)81479-J

[4] Somlyai G., Laskay G., Berkényi, T. et al.: Naturally occuring deuterium may have a
central role in cell signalling. In: Synthesis and Application of Isotopically Labelled

Water, a Possible New Tool in Cancer Therapy. Z. Onkol. /J. Oncol. 1998. 30, 4


delay the progression of prostate cancer. J. Cancer Ther. 2011; 2: 548-556. doi:
10.4236/jct.2011.24075

